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The electron and ion continuity equations and Poisson’s equation are solved for the motion 
of a pulse of plasma of peak density up to 10” cm-‘, in nitrogen at 12 kPa, with an initially 
uniform electric field of -5.58 kV/cm. Slight movement of the electrons causes the electric 
field to be reduced to almost zero throughout the plasma and enhanced outside the plasma. 
The net charge has a positive peak near the cathode and a negative peak near the anode and 
varies smoothly from one to the other throughout the plasma. It is possible to obtain results at 
these higher densities by (i) the use of the flux-corrected transport algorithm of Boris and 
Book, “Phoenical LPE Shasta,” together with Zalesak’s flux limiting algorithm, and (ii) the 
limiting of the time step to avoid a numerical instability. The numerical instability at these 
high densities is found to be an oscillation in the calculated electric current due to too great a 
change in the electric field in one time step. With a suitable limitation in the time step, 
calculations can be performed at much higher plasma densities. 

1. INTR~OUCTI~N 

In a recent paper [ 1 ] we presented the results of the effects of space-charge fields 
on the motion of electrons and ions for peak densities up to 5 x 10” cmm3. The 
method used was the two-step Lax-Wendroff method and, due to numerical 
dispersion and a numerical instability, it was not possible to perform calculations for 
higher density plasmas at that time. 

In this paper it is shown how calculations can be performed at much higher 
densities, 1OL3 cmm3 in this case, using a flux corrected trnasport (FCT) algorithm 
due to Boris and Book [2], provided the time step is limited to avoid a space-charge- 
driven numerical oscillation. A detailed comparison of the FCT method with other 
available methods is given elsewhere [3]. The FCT method introduces less numerical 
dispersion and diffusion than the other methods examined. Furthermore, it is more 
stable for the sharp discontinuities in the physical parameters encountered in high 
density plasmas. The FCT method also allows a small amount of diffusion to be 
included in a more convenient way than has been presented previously. Nevertheless, 
the FCT method does not take a significantly longer computing time than the two- 
step Lax-Wendroff method. The particular FCT algorithm used is the “Phoenical 
LPE Shasta” method with the modified flux correction algorithm of Zalesak [4]. 
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In general, for the explicit solution of hyperbolic equations, the time step At is 
limited by the Courant-Friedrichs-Lewy condition which requires that At < Ax/W, 
where Ax is the grid space and W the velocity [5]. For the FCT method this 
condition becomes At < Ax/2W, however, for very high densities the change in 
electric field AE in one time step due to space charge movements is comparable to 
E,, the initial field, and numerical oscillations occur. These oscillations are best 
displayed by calculating the external-circuit electric current which illustrates the 
back-and-forth motion of the charges. This problem is overcome by limiting the time 
step and, in principle, calculations can be performed without an upper limit on the 
density. 

2. PROBLEM To BESOLVED 

2.1. Equations 

The equations to be solved 
equations for electrons and ions 
are neglected, but slight electron 

simultaneously are the drift-dominated continuity 
in one-dimensional conservative form. Source terms 
diffusion is included. The equations are 

aNe -=- 
at 

We We) + 2 D aN, 
ax ( -1 ax ax 

and 

(2) 

where Np and N, are ion and electron densities, respectively, and W, and W, are 
electric-field-dependent ion and electron velocities, respectively. The effect on the 
electric field of space charge, due to ion and electron concentrations, is obtained by 
solving Poisson’s equations 

VE = - [/E, (3) 

where E,, is the permitivity of free space, c the charge density given by 

C = W, - N,> (4) 

and e the electronic charge. 
To account correctly for the space-charge field due to a finite charge distribution, it 

is necessary to solve Poisson’s equation in three dimensions, as discussed by Davies 
et al. [6]. We use the method of Davies and Evans [7] to account for these effects 
and solve for a cylinder of charge, which gives the field at a point P due to a charge 
distribution c(x) by a simple geometric integration. Five image charge distributions 
beyond each electrode are also included. 
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We calculate the electric current in the external circuit due to the motion of 
electrons and ions between the electrodes using an equation developed by Sato [8], 

z= 

where Z is the external-circuit current in amperes, VA is the applied voltage, E, the 
initial field in the absence of space charges, r the discharge radius, e the electron 

\ charge, and d the electrode separation. 

2.2. Initial Conditions 
The physical parameters have been discussed in detail by Morrow and Lowke [ I]. 

Briefly, the plasma moves between parallel plates 3 cm apart in an initially uniform 
electric field of -5.58 kV/cm. This space is represented by a grid of 201 points, hence 
Ax = 0.015 cm. The initial Gaussian electron and ion distributions are identical and 
overlap to give a neutral plasma with no field distortion. The distributions are cylin- 
drical with a diameter of 0.5 cm, over which the densities are constant, while in the 
axial direction the density varies as 

N,=N,=N,exp( - [(x- 1.5)/0.25]*} cme3 (6) 

The time step used is variable in this case, as discussed below. 

3. NUMERICALMETHODS 

Since Boris and Book present many alternative FCT algorithms, some detail of the 
particular algorithm used will be presented. This also allows an explanation of the 
method of introducing a realistically small amount of diffusion. The Phoenical LPE 
Shasta method involves the following steps: 

1. Compute a transported and diffused intermediate solution NY+’ using 

N*j+l =N/-$[~ I i+lIz(N{+l fNj)-Ei-1/2(Ni +Nj-l)l 

+ ivi+ IIZCNj+ L -Nj)-lJ&,,,(Nj-N;-,)] (7) 

where N is the number density, j refers to the time step, and i refers to the grid 
position, ci+ ,,2 = Wi+,,2. At/A, and W,, ,,* is the drift velocity half way between grid 
points i and i + 1, calculated in this case by simple averaging. For the Phoenical LPE 
version of the Shasta algorithm the diffusion coefficient is 

“it l/Z =d+fsf+,,,. 
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2. Compute the raw antidiffusive fluxes, which in the case of the Phoenical 
version are 

4 f+l/2=Pi+l/2 [N;“;‘fl-Nf’+’ +(-N{+2+3N;+,-3N;+NjJ6] 

where ,D*+ ,,2 = (1 - E:+ 1,2)/6, the antidiffusion coefficient. 
3. Compute corrected antidiffusive fluxes 4 using 

L/2 = S max {0, min [S(Nj$’ - NF+‘: ‘), ](i+ ,,2 ], S(Ni*j+’ - Ni*-/: ‘)] ) 

where ]S]= 1 and S=sign(N,*:‘:‘-NT”‘). 
4. Perform antidiffusion using 

#+I =Nfd+’ 
-Ti+1/2 +$i-112 

Thus N{+’ is the required solution at c + At, without any significant numerical 
diffusion or dispersion. Simultaneous calculations of this type are carried out for the 
ion and electron densities. 

Step 3, however, was replaced by the new algorithm for flux limiting developed by 
Zalesak [4] as outlined in Section 4 of this paper. The method of avoiding “clipping” 
by predicting maxima and minima between grid points for use in flux limiting, 
outlined in Section V of Zalesak’s paper, was also applied. The advantages in using 
this approach have been examined in detail by Morrow [3]. 

At the upstream electrode (i.e., generally the cathode for electrons and anode for 
ions), we impose boundary conditions of N, = 0 and N, = 0. At the downstream elec- 
trode, we use upwind differencing to evaluate the drift terms in Eqs. (1) and (2) [9]. 

As outlined by Boris and Book [2] the introduction of a small amount of diffusion 
is quite simple with this method. If di+ ,,2 is the required diffusion coefficient at i + f, 
then this is expressed in dimensionless form and subtracted from the antidiffusion 
coefficient, pi+ ,,2, such that the new antidiffusion coefficient ,ui+ ,,2 is given by 

4+ 112 =iUi+ l/2 - di+ 112 At/(Ax)2 provided &+ 1,2 2 0. (11) 

The current in the external-circuit was calculated at each time step by numerically 
integrating Eq. (5) using the trapezoidal rule [lo]. 

The time step was calculated using 

At = K Ax/v= (12) 

where vu’ is the maximum value of the electron velocity and K < 0.25. Before the 
onset of numerical instability, K = 0.25 is used, so that the FCT rule At < Ax/2w is 
obeyed. As shown below, K must be considerably reduced as the density is increased. 
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4. RESULTS 

4.1. Plasma Motion 

Results are presented in Fig. 1 for a plasma of peak density, N, = lOI crrP3, for 
the first 14 ns. The number of computational steps was 800 and the average time step 
was 0.018 ns. The time step was determined using Eq. (12), with K = 0.05. 

The motion of the electrons relative to the ions is very slight as shown in Fig. la, 
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FIG. 1. Calculations of plasma motion and space-charge electric fields using FCT method with 
E, = -5.58 kV/cm, IV, = lOI cm-3, and K = 0.05. Calculations are for 800 steps and a time of 14-ns. 
Curves are shown for t = 1.8, 4.7, 10.1, and 14 ns. (a) Electron and ion density distribution, (b) charge 
distribution, (c) total electric field. 



HIGH DENSITY PLASMAS 459 

while the ions do not move significantly. The electron distribution shows similar 
characteristics to those discussed for lower density plasmas by Morrow and 
Lowke [ 11. The trailing edge of the electron distribution becomes quite steep, while 
the escaping electrons have a flat distribution. 

This motion is hardly perceptible in Fig. la but becomes clearer when the charge is 
calculated, as shown in Fig. lb. Near D = 1 cm there is a large positive peak in the 
charge density, which is responsible for the large field outside the plasma, and low 
field inside the plasma (see [ 1 I). The positive peal becomes larger with time, as 
electrons are driven into the plasma, and the right-hand edge of the positive peak 
becomes very steep, corresponding to the steep trailing edge of the electron 
distribution. Near D = 2 cm, there is a similar peak of negative charge, which 
becomes flatter as electrons begin to escape [ 11. Between the positive and negative 
peaks there is a steady change throughout the plasma from positive charge near the 
cathode to negative near the anode, with the charge being zero only near D = 1.5 cm. 
This internal charge distribution is necessary to give the essentially zero field inside 
the plasma shown in Fig. lc. The positive peak in the charge density reduces the field 
inside the plasma to zero; however, the field would then rise again if more positive 
charge was not distributed closer to the center of the plasma. As shown in Fig. lc, 
aE/ax sz 0 and aE/ax # -C/E, because the finite dimensions of the plasma require the 
field to be calculated using Poisson’s equation (Eq. (3)) in three dimensions [ 111. 

The results for the electric field calculation, shown in Fig. lc. are very similar to 
those presented for a peak density of 5 x 10” cm-3 by Morrow and Lowke [ 11. The 
field within the plasma, however, is more uniform and approaches zero more closely 
near D = 1.5 cm, where the field is E TZ -8 V/cm. 

4.2 Numerical Instability 

The time step was determined using Eq. (12), where the Courant-Friedrichs-Lewy 
condition requires K < 1 and the FCT algorithm requires that K < 0.5. These 
restrictions, however, relate to the transport algorithm, and take no account of the 
change in electric field caused by the movement of charge. Thus, at high density, the 
transport algorithm will allow in one time step a movement of charge sufficient to 
reverse the driving field, i.e., AE > E,. The electron motion is then reversed, and a 
step-by-step numerical oscillation develops, giving an oscillating electric current, 
shown in Fig. 2a for the same conditions as Fig. 1, except that K = 0.1. This result 
shows the extraordinary stability of the FCT method, because, as the numerical 
oscillation damps out, the solution converges to that shown in Fig. 1. A reduction in 
the value of K to K = 0.05 gives the result shown in Fig. 2b, which is the current 
corresponding to the results of Fig. 1, and which shows no sign of instability. 

For a peak density of 5 x 10” cme3, the instability occurs for K = 0.25, but the 
results are stable for K = 0.1, Thus, to a first approximation, the limit on At is 
inversely proportional to N,,. Basically, however, it is the change in the electric field 
in one time step that must be limited to some fraction of, say, the initial field and this 
can be implemented automatically in the computer program. 
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FIG. 2. Calculations of the external-circuit current versus time due to ion and electron motion using 
Sato’s (Eq. 5)) for E, = - 5.58 kV/cm and N0 = 10” cm-‘. (a) Current calculated with K = 0.1, (b) 
current calculated with K = 0.05, corresponding to the results of Fig. 1. 

4.3 Computer Time 
For an identical problem, the central processor time used for the two-step 

Lax-Wendroff method was 9.9 s while for the FCT method the time used was 12.3 s. 
Thus the penalty for the extra complexity and stability is not very great. 

5. CONCLUSIONS 

A plasma pulse of volume -(0.5)3 cm3 and density ~10’~ cmm3 is very stable and 
the application of an electric field ~6 kV/cm causes an almost imperceptible 
movement of the electron distribution. The electric field, however, is almost entirely 
excluded from the body of the plasma. The charge distribution shows that electrons 
move relative to the ions throughout the plasma, giving a steady gradient in charge 
from positive to negative in the plasma. Thus, charge neutrality does not hold for a 
finite plasma in a electrc field. The movement of charges that produces the result 
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cYE/ax t-z 0 in the plasma does not require the charge to be zero, because, for a finite 
plasma, Poisson’s equation must be solved in three dimensions. 

The numerical instability at high densities results from too large a change in the 
electric field within one time step causing a numerical charge oscillation. Recognition 
of this limitation on the time step allows results to be obtained at comparatively high 
densities. 

These results show the great stability of the FCT method with the most extreme 
nonuniformities in charge density and electric field. The ability of the algorithm to 
converge onto the correct solution when thrown completely off course by the use of 
too large a time step gives considerable support for and confidence in the method. 
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